Computational Study on the Thermochemistry of Cyclopentadiene Derivatives and Kinetics of Cyclopentadienone Thermal Decomposition

Hai Wang*

Department of Mechanical Engineering, University of Delaware, Newark, Delaware 19716-3140

Kenneth Brezinsky

Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607 Received: August 28, 1997; In Final Form: December 5, 1997

The enthalpies of formation were determined for 15 intermediate species of cyclopentadiene oxidation under combustion conditions by ab initio molecular orbital calculations at the G2(MP2,SVP) and G2(B3LYP/MP2,SVP) levels of theory and with the use of isodesmic reactions. The G2(B3LYP/MP2,SVP) method, a hybrid of G2(MP2,SVP) and the density-function-based G2(B3LYP/MP2), was devised in the present study. The devised method is less demanding computationally, but it provides atomization energies with accuracy comparable with G2(MP2) and G2(B3LYP/MP2). In addition, the pathways and reaction rate coefficients for the thermal decomposition of cyclopentadienone were studied with molecular orbital and RRKM calculations. The computational results show that at high temperatures the decomposition of cyclopentadienone leads primarily to cyclobutadiene. An analysis of the chemically activated reactions of the cyclopentadienyl radical suggests that cyclopentadienylidene may potentially be an important intermediate species of cyclopentadiene oxidation at high temperatures.

I. Introduction

It has been well-established that during the high-temperature oxidation of benzene and toluene one of the major intermediates is cyclopentadiene (C_5H_6) .^{1,2} The cyclopentadiene may then be oxidized to cyclopentadienone (C_5H_4O) , which subsequently decomposes to noncyclic species, such as acetylene, diacetylene, and possibly vinylacetylene.

Detailed kinetic models assembled on the basis of the aforementioned reaction pathway have been tested against available experimental data, including the species profiles measured during benzene and toluene oxidation in a flow reactor over the temperature range 1000-1200 K,² the species profiles in the burner-stabilized low-pressure benzene flame³⁻⁵ of Bittner and Howard,⁶ and the laminar flame speeds of benzene—air and toluene—air mixtures.^{7,8} It was shown that the models predicted reasonably well each individual set of the experimental data, but a comprehensive and physically justifiable model, which is capable of closely predicting *all* the available experimental data, is still lacking.

The inability of the detailed kinetic models to reconcile various literature data can be attributed at least partly to the uncertainties in the thermodynamic data. There are few experimental data available for the enthalpy of formation, $\Delta_f H_{298}^{\circ}$, of the intermediate chemical species involved in the pathway of aromatics oxidation via cyclopentadiene. In particular, the uncertainty in the $\Delta_f H^{\circ}_{298}$ of the cyclopentadienyl radical is as large as ± 10 kcal/mol. Furthermore, measurements for the oxygenated species are not at all available. Karni et al.⁹ performed ab initio molecular orbital (MO) calculations at

the Hartree–Fock level of theory, employing the 3-21G and 6-31G(d) basis sets. With the use of isodesmic reactions, they estimated the thermochemical data of cyclopentadiene derivatives. These data are valuable in that they have been used as the basis for the subsequent development of detailed kinetic models of one-ring aromatics oxidation.

Because of the limited predictive accuracy of the Hartree– Fock method¹⁰ and considering the recent developments of more predictive computational chemistry tools, the accuracy of the earlier thermochemistry estimates of ref 9 should be and can be improved. We note that the G2 method¹¹ and its variations^{12–15} are capable of predicting the atomization energies with an average error of less than 2 kcal/mol. Because the prediction of atomization energy is a more stringent test than the prediction of enthalpy of formation with the use of isodesmic reactions, it is expected that the G2 methods can predict $\Delta_f H^o_{298}$ to within ±2 kcal/mol accuracy. These methods have been used to predict $\Delta_f H^o_{298}$ for strained ring compounds.^{16–18}

In this study, we used several simplified versions of G2 to determine the enthalpies of formation for the cyclopentadiene and cyclopentadiene derivatives. The target species are shown in Figure 1 and include cyclopentadiene (C_5H_6 , 1), cyclopentadienyl (C_5H_5 , 2), cyclopentadienol (C_5H_5OH , 3-5), cyclopentenone (C_5H_6O , 6 and 7), C_5H_5O radical species (8–11), cyclopentadienone (C_5H_4O , 12), oxobicyclopentene (C_5H_4O , 13), and the triplet and singlet cyclopentadienylidene (13, 14) radicals.

In addition to the critical importance of accurate thermochemical data in kinetic model development, we note that there still exist uncertainties in the reaction pathways leading to ring breakage. In particular, it was proposed² that one of the major steps of ring breakdown is the thermal decomposition of **12**, $C_5H_4O \rightarrow CO + 2C_2H_2$. It was identified in modeling studies

^{*} Corresponding author: Department of Mechanical Engineering, University of Delaware, 102C Spencer Laboratory, Newark, DE 19716-3140. E-mail: hwang@me.udel.edu. FAX: (302) 831-3619.

Thermochemistry of Cyclopentadiene Derivatives

Figure 1. Structures of the target species.

of benzene and toluene oxidation in a flow reactor² and in laminar flames burning benzene- and toluene-air mixtures⁷ that the above reaction was one of the dominant ring breakdown processes. Because the proposed reaction requires breaking three chemical bonds, it must involve one or more thermally activated isomers before it can form the final products. A detailed knowledge of the minimum-energy paths is therefore extremely valuable. Hence, we performed molecular orbital calculations to determine the energy barriers along several possible paths. On the basis of the computed energy barriers and vibrational frequencies, we calculated the pressure-dependent rate coefficients using the Rice-Ramsperger-Kassel-Marcus (RRKM) theory.¹⁹ In addition, the reaction pathways of several chemically activated reactions of the cyclopentadienyl radical are discussed. The emphasis was placed on the cyclopentadienylidene radical as a potential intermediate of aromatics oxidation.

II. Computational Methodology

The ab initio MO calculations were carried out using the Gaussian 94 program.²⁰ We adopted the $G2^{11}$ and $G2(MP2)^{12}$ methods for cyclopentadiene (1) and cyclopentadienone (12), G2(MP2) for 2,4-cyclopentadien-1-ol (3), and G2(MP2,SVP) for all target species. The last method presents significant saving in computational resources without significant sacrifice in accuracy, as will be demonstrated by comparing the obtained results with the more expansive G2 and G2(MP2).

To further explore savings in computational resources, we propose to combine the reduced basis-set approach of ref 13, e.g., G2(MP2,SVP), and the density-function-based geometry and frequencies of Bauschlisher and Partridge,¹⁵ i.e., G2(B3LYP/MP2). A hybrid of the two approaches is denoted as G2-(B3LYP/MP2,SVP). Specifically, we optimize the geometry and compute the vibrational frequencies using the B3LYP method²¹ with the split-valence plus polarization 6-31G(d) basis and the MP2 calculation with the 6-311+G(3df,2p)

basis set. The resulting G2(B3LYP/MP2,SVP) energy is given by

$$E_0 = E[\text{QCISD}(\text{T})/6-31\text{G}(\text{d})] + \Delta_{\text{B3LYP/MP2,SVP}} + \text{HLC} + E(\text{ZPE})$$

where $\Delta_{B3LYP/MP2,SVP} = E[MP2/6-311+G(3df,2p)] - E[MP2/6-31G(d)]$, and E(ZPE) is the zero-point energy determined from the B3LYP/6-31G(d) frequencies multiplied by a scaling factor of 0.98.¹⁵ Such an approach is similar to G2(MP2,SVP), but the MP2 geometries and vibrational frequencies are replaced by those of B3LYP calculations.

For the higher level correction,

$$HLC = -An_{\beta} - Bn_{\alpha}$$

where n_{α} and n_{β} are respectively the number of α and β valence electrons, we assigned B = 0.0019 au, which is the same as that of G2¹¹ and G2(MP2)¹² because it is based on the H atom. To obtain the *A* value, we performed calculations and minimized the average deviation between the computed and experimental dissociation energies for the 55 species originally used in the G2 study. The value of *A* determined in this manner is 0.005 19 au.

To estimate the enthalpies of formation, each target species was assigned with one or more isodesmic reactions.²² The reaction enthalpies were computed from the energy difference between the products and reactants. The enthalpies of formation of the reference species in an isodesmic reaction were obtained through a review of literature data.

The transition-state structures of cyclopentadienone thermal decomposition were initially optimized with the spin-unrestricted Hartree–Fock (UHF) method, employing the split-valence 3-21G basis set. The structures were further optimized at the HF/6-31G(d) level and refined at the UMP2(full)/6-31G(d) level. In all calculations, we employed the analytical gradient procedure and the combined synchronous transit and quasi-Newton (STQN) method.²³ The vibrational frequencies were obtained

TABLE 1: Summary of the G2(B3LYP/MP2,SVP) Energies (E, Hartrees)

		, , ,			
molecule	Ε	molecule	Ε	molecule	Ε
Be	-14.625 413	CO_2	-188.358 996	NH ₃	-56.456 075
С	-37.782390	CS	-435.706 871	NO	-129.736 637
Cl	-459.667 800	C_2H_2	-77.184 968	N_2	-109.393 237
F	-99.630 172	C_2H_4	-78.412 466	N_2H_4	-111.676 867
Н	$-0.500\ 000$	C_2H_6	$-79.624\ 002$	NaCl	-621.672 526
Li	-7.432 217	ClF	-559.396 102	Na ₂	-323.723 592
Ν	-54.517 119	ClO	-534.745 718	OH	-75.641 695
Na	-161.846 168	Cl_2	-919.428 002	O_2	-150.145 117
0	$-74.980\ 218$	F_2	-199.318 601	PH_2	-342.043 926
Р	-340.814 151	HCN	-93.284 061	PH_3	-342.673 612
Si	$-288.930\ 385$	HCO	-113.696 041	P_2	-681.813 592
S	-397.647 653	HCl	-460.332 869	SO	-472.820 514
BeH	-15.193 265	HF	$-100.348\ 066$	SO_2	-548.011 396
CH	-38.410 467	HOCl	-535.398 936	S_2	-795.453 632
$CH_2(^{1}A_1)$	-39.056 247	CH_2O	-114.335 692	$SiH_2(^1A_1)$	-290.163 340
$CH_2({}^{3}B_1)$	-39.065 791	H_2O	-76.329 947	$SiH_2({}^{3}B_1)$	-290.126096
CH_3	-39.740 765	H_2O_2	-151.362 068	SiH ₃	-290.767 891
CH ₃ Cl	-499.543 302	H_2S	-398.924 832	SiH ₄	-291.411 917
CH_4	$-40.406\ 254$	LiF	-107.281 589	SiO	-364.215 087
CH_3OH	-115.529 605	LiH	-8.021004	Si_2	-577.977 725
CH ₃ SH	-438.139 766	Li_2	-14.906 856	Si_2H_6	-581.656 192
CN	-92.583 933	NH	-55.140 325		
CO	-113.176 597	NH_2	-55.786 818		

from the geometries optimized at the UMP2(full)/6-31G(d) level of theory. These frequencies are multiplied by an appropriate scaling factor of 0.9646.²⁴ The energy barriers were determined by the G2(MP2,SVP) energies. For comparison, G2(B3LYP/MP2,SVP) was also employed for selected transition-state calculations.

III. Results and Discussion

The G2(B3LYP/MP2,SVP) Method. Table 1 presents the total energies computed with G2(B3LYP/MP2,SVP). The resulting dissociation energies and the differences between the experimental and theoretical dissociation energies are shown in Table 2. The G2(B3LYP/MP2,SVP) method yields an average error of 1.37 kcal/mol and a maximum error of 4.5 kcal/ mol for dissociation energy. These results are nearly identical with the respective average and maximum deviations of G2-(MP2) at 1.31 and 4.2 kcal/mol,12 G2(MP2,SVP) at 1.34 and 4.2 kcal/mol,¹³ and G2(B3LYP/MP2) at 1.32 and 3.7 kcal/mol.¹⁵ At the same time, we note that G2(B3LYP/MP2,SVP) presents significant savings in both CPU time and disk storage requirements, because the QCISD(T)/6-311G(d,p) calculation in G2-(MP2) and G2(B3LYP/MP2) was replaced with the significantly less demanding QCISD(T)/6-31G(d) calculation. The computational time required for G2(B3LYP/MP2,SVP) is roughly a factor of 10 less than G2, one-fifth comparing to G2(MP2), and one-half of that of G2(MP2,SVP).

Enthalpies of Formation. Table 3 presents the G2 energies of the target and reference species and the literature enthalpy values of the reference species used for determination of the $\Delta_f H^{\circ}_{298}$ of the target species. When available, the uncertainties in the reference $\Delta_f H^{\circ}_{298}$ are also provided.

Table 4 presents the isodesmic reactions assigned and the enthalpies of formation obtained for the target species. It is seen that for C_5H_6 (1), 2,4- C_5H_5OH (3), and 2,5- C_5H_4O (12) the $\Delta_f H^\circ_0$ values predicted with the employed methods are within 1 kcal/mol of each other, including G2 for 1 and 12. The remarkable agreement suggests that calculations performed at the G2(MP2,SVP) and G2(B3LYP/MP2,SVP) levels of theory are as accurate as the full G2 method. Hence, other target species were studied only with the latter two methods, which provide nearly identical enthalpy of formation for almost every

TABLE 2:	Summary	of the (Compu	ted G	2(B3LYP/	
MP2,SVP)	D_0 Values	(kcal/mo	ol). $\hat{\Delta}$]	Is the	Experime	ntal
Results Mi	nus the Th	eoretical	l Resul	ts	-	

molecule	D_0	Δ^a	molecule	D_0	Δ^a
BeH	42.6	4.3	H_2S	173.8	-0.6
СН	80.3	-0.4	LiF	137.5	0.1
$CH_2(^{1}A_1)$	171.7	-1.1	LiH	55.7	0.3
$CH_2({}^{3}B_1)$	177.7	1.9	Li ₂	26.6	-2.6
CH_3	287.5	1.7	NH	77.3	1.7
CH ₃ Cl	372.0	-1.0	NH_2	169.1	0.9
CH_4	391.3	1.2	NH_3	275.3	1.4
CH ₃ OH	481.0	-0.2	NO	150.1	0.0
CH ₃ SH	445.1	0.0	N_2	225.1	0.0
CN	178.4	-1.8	N_2H_4	403.0	2.4
CO	259.6	-3.4	NaCl	99.4	-1.9
CO_2	386.4	-4.5	Na_2	19.6	-3.0
CS	173.6	-4.1	OH	101.3	0.0
C_2H_2	389.0	-0.1	O_2	115.8	2.2
C_2H_4	531.6	0.3	PH_2	144.1	0.6
C_2H_6	664.3	2.0	PH_3	225.4	2.0
ClF	61.5	-1.2	P_2	116.2	-0.1
ClO	61.3	2.0	SO	120.8	2.7
Cl_2	57.9	-0.7	SO_2	252.9	1.1
F_2	36.5	0.4	S_2	99.3	1.4
HCN	303.9	-2.1	$SiH_2(^1A_1)$	146.1	-1.7
HCO	271.8	-1.5	$SiH_2({}^{3}B_1)$	122.7	0.7
HCl	103.5	-1.3	SiH_3	211.7	2.3
HF	136.7	-1.5	SiH ₄	302.0	0.8
HOCl	157.4	-1.1	SiO	191.0	-0.5
CH_2O	359.4	-2.1	Si ₂	73.3	0.7
H_2O	219.3	0.0	Si ₂ H ₆	498.8	1.3
H_2O_2	251.9	0.4			

^{*a*} Average error = 1.37 kcal/mol.

species studied. The agreement in the results obtained with G2-(MP2,SVP) and G2(B3LYP/MP2,SVP) provides additional confidence that the estimated enthalpies of formation are accurate. The only exception is that of **9**, in that we were not able to obtain meaningful QCISD(T)/6-31G(d) and MP2/6-311+G(3df,2p) energies when the optimized B3LYP/6-31G-(d) geometry was used to compute the G2(B3LYP/MP2,SVP) energy.

Averaging the $\Delta_f H^\circ_0$ results shown in columns 3–6 of Table 4 and correcting them to 298 K by sensible enthalpies, we obtained $\Delta_f H^\circ_{298}$ of the target species, as presented in Table 4. These $\Delta_f H^\circ_{298}$ values are recommended for future uses. For

TABLE 3: Calculated G2, G2(MP2), G2(MP2,SVP), and G2(B3LYP/MP2,SVP) Total Energies (Hartrees) and Enthalpies of Formation of Reference Species (kcal/mol)

	G2	G2(MP2)	G2(MP2,SVP)	G2(B3LYP/MP2,SVP)	$\Delta_{ m f} H^{\circ}{}_{298}$	$\Delta_{ m f} H^{\circ}{}_0$
reference species						
CH_4	-40.41089	-40.40966	-40.40768	$-40.4062 5^{a}$	-17.9 ± 0.1^{b}	-15.9^{b}
C_2H_4	-78.415 93	-78.41430	-78.413 44	-78.41247^{a}	12.5 ± 0.1^{b}	14.6^{b}
C_2H_6	-79.630 86	-79.628 91	-79.62606	$-79.6240 0^{a}$	-20.0 ± 0.1^{c}	-16.3^{d}
C_2H_5			-78.965 60	-78.964 10	28.4 ± 0.2^{e}	30.5^{d}
C ₂ H ₅ OH		-154.76050	-154.758 19	-154.756 90	-56.2 ± 0.1^{c}	-52.0^{f}
CH ₃ CHOH			-154.10722	-154.106 34	-14.5^{g}	-11.3^{d}
CH ₃ CH ₂ O			-154.089 75	-154.088 34	-3.7 ± 0.8^{h}	-0.4 ± 0.9^{h}
CH ₂ CHOH			-153.553 63	-153.553 08	-29.8^{i}	-27.3^{d}
CH ₂ CHO			-152.919 07	-152.919 02	6.1^{j}	7.8^{d}
CH ₃ CHO	-153.576 84	-153.572 97	-153.571 48	-153.57101	$-39.7 \pm 0.1^{\circ}$	-37.2^{d}
$CH_2 ({}^{3}B_1)$			-39.066 23	$-39.0657 9^{a}$	93.8 ^j	93.7^{d}
$CH_2 ({}^1A_1)$			-39.056 34	-39.05625^{a}	102.7^{j}	102.6^{d}
$i-C_4H_{10}$			-158.076 63		-32.1 ± 0.2^{b}	-25.2^{d}
target species						
$C_5H_6(1)$	-193.707 33	-193.703 69	-193.704 25	-193.703 08	32.1 ± 0.4^{c}	36.2^{d}
$C_5H_5(^2B_1)(2)$			see text	-193.07207		
$C_5H_5(^2A_2)(2)$			see text	-193.071 04		
2,4-cyclo-C ₅ H ₅ OH (3)		-268.83040	-268.831 21	$-268.830\ 80$		
1,3-cyclo-C ₅ H ₅ OH (4)			-268.843 27	-268.84242		
1,2-cyclo-C ₅ H ₅ OH (5)			-268.84455	-268.843 77		
2-cyclo-C ₅ H ₆ O (6)			-268.865 95	-268.86502		
3-cyclo-C ₅ H ₆ O (7)			$-268.860\ 10$	-268.85942		
2,4-cyclo-1-C ₅ H ₄ OH (8)			-268.219 85	-268.221 09		
$2,4$ -cyclo- 1 - $C_5H_5O(9)$			-268.16075	k		
$1,3$ -cyclo- $1-C_5H_5O(10)$			-268.23209	-268.231 26		
1,2-cyclo- 1 -C ₅ H ₅ O (11)			-268.216 30	-268.218 66		
2,4-cyclo-C ₅ H ₄ O (12)	-267.653 02	-267.647 27	-267.64848	-267.648 55		
bicyclo- $C_5H_4O(13)$			-267.568 17	-267.568 49		
$c-C_5H_4$ (14) (³ B ₁)			-192.391 81	-192.392 54		
$c-C_5H_4$ (15) (¹ A ₂)			-192.386 49	-192.387 21		

^{*a*} From Table 2. ^{*b*} Reference 25. ^{*c*} Reference 26. ^{*d*} Corrected to 0 K with the sensible enthalpy $(H^{\circ}_{298} - H_0^{\circ})$. Hindered internal rotation is taken into consideration when necessary. ^{*e*} Reference 27. ^{*f*} Corrected to 0 K with the sensible enthalpy $(H^{\circ}_{298} - H_0^{\circ})$ value of ref 28. ^{*s*} Reference 29. ^{*h*} Reference 30. ^{*i*} Reference 31. ^{*j*} Reference 32. ^{*k*} Unable to obtain meaningful MP2/6-311+G(3df,2p) and QCISD(T)/6-31G(d) energies.

TABLE 4:	Enthalpies of	Formation of	f Target S	Species (kcal	/mol)
----------	---------------	--------------	------------	---------------	-------

				$\Delta_{ m f} H^{ m o}{}_0$				
					G2(B3LYP/	ave	erage	literature
species	isodesmic reaction		G2(MP2)	G2(MP2, SVP)	MP2,SVP)	$\overline{\Delta_{\mathrm{f}} H^{\circ}{}_{0}{}^{a}}$	$\Delta_{\rm f} H^{\circ}{}_{298}{}^b$	$\Delta_{ m f} H^{\circ}{}_{298}$
C ₅ H ₆ (1)	$+ 5CH_4 = 3C_2H_6 + 2C_2H_4$	36.4	36.8	36.2	36.3	36.4	32.3	$32.1 \pm 0.4^d, 33.3^e$
$C_{5}H_{5}(^{2}B_{1})(2)$	$+5CH_4 = C_2H_5 + 2C_2H_6 + 2C_2H_4$			see text	65.0	65.0 ^c	62.0	$63 \pm 2,^{f} 61 \pm 2,^{g} 50,^{h} 58 \pm 2,^{i} 63.2^{e}$
$C_5H_5(^2A_2)(2)$				see text	65.6	65.6 ^c	62.6	
2,4-C5H5OH (3)	$+ 5CH_4 = 2C_2H_6 + C_2H_5OH + 2C_2H_4$		4.2	3.8	3.9	3.8	-0.6	1.9 ^e
	$+ C_2H_6 = C_5H_6(1) + C_2H_5OH$		3.6	3.7	3.8			
1,3-C ₅ H ₅ OH (4)	$+5CH_4 = 3C_2H_6 + CH_2CHOH + C_2H_4$			-4.9	-4.8	-4.9	-9.2	-5.8^{e}
	$+ C_2H_4 = C_5H_6(1) + CH_2CHOH$			-5.0	-4.9			
1,2-C ₅ H ₅ OH (5)	$+ 5CH_4 = 3C_2H_6 + CH_2CHOH + C_2H_4$			-5.7	-5.6	-5.8	-10.0	-6.5^{e}
	$+ C_2H_4 = C_5H_6(1) + CH_2CHOH$			-5.9	-5.8			
2-C ₅ H ₆ O (6)	$+5CH_4 = 3C_2H_6 + CH_3CHO + C_2H_4$			-17.9	-17.6	-17.8	-22.2	
3-C ₅ H ₆ O (7)	$+5CH_4 = 3C_2H_6 + CH_3CHO + C_2H_4$			-14.2	-14.1	-14.2	-18.7	
2,4-C5H4OH (8)	$+ 5CH_4 = 2C_2H_6 + CH_3CHOH + 2C_2H_4$			19.6	19.0	19.3	15.9	20.9 ^e
	$+ C_2H_6 = C_5H_6(1) + CH_3CHOH$			19.6	18.8			
2,4-C ₅ H ₅ O (9)	$+ 5CH_4 = 2C_2H_6 + CH_3CH_2O + 2C_2H_4$			56.6		56.6	52.8	54.1 ^e
	$+ C_2H_6 = C_5H_6(1) + CH_3CH_2O$			56.6				
1,3-C ₅ H ₅ O (10)	$+5CH_4 = 3C_2H_6 + CH_2CHO + C_2H_4$			15.5	16.0	15.7	12.2	14.3 ^e
	$+ C_2H_4 = C_5H_6(1) + CH_2CHO$			15.5	15.8			
1,2-C ₅ H ₅ O (11)	$+5CH_4 = 3C_2H_6 + CH_2CHO + C_2H_4$			25.4	23.9	24.6	21.1	24.7^{e}
	$+ C_2H_4 = C_5H_6(1) + CH_2CHO$			25.4	23.7			
C ₅ H ₄ O (12)	$+ 5CH_4 = 2C_2H_6 + CH_3CHO + 2C_2H_4$	15.6	16.2	16.1	16.4	16.0	13.2	
	$+ C_2H_6 = C_5H_6(1) + CH_3CHO$	15.5	15.6	16.0	16.3			
bicyclo- $C_5H_4O(13)$	$+ 2C_2H_6 = 2i-C_4H_{10} + CH_3CHO + C_2H_4$		66.8		66.8	64.1		
C ₅ H ₄ (³ B ₁) (14)	$+ 6CH_4 = CH_2(^{3}B_1) + 3C_2H_6 + 2C_2H_4$			127.6	127.2	127.4	125.2	112.3 ± 4.7^{j}
$C_{5}H_{4}(^{1}A_{2})(15)$	$+ 6CH_4 = CH_2(^1A_1) + 3C_2H_6 + 2C_2H_4$			133.7	133.4	133.6	131.6	118.1 ± 4.7^{j}

^{*a*} Average over calculated $\Delta_t H^o_0$ values. ^{*b*} Corrected from 0 K. ^{*c*} $\Delta_t H^o_0$ from G2(B3LYP/MP2,SVP) calculations only. ^{*d*} Reference 26. ^{*e*} Computed, ref 9. ^{*f*} Reference 33. ^{*s*} From measurements of cyclopentadiene acidity³⁴ and electron affinity.³⁵ ^{*h*} Reference 36. ^{*i*} Reference 37. ^{*j*} Reference 38, based on the sum of $\Delta_t H^o_{298}$ of c-C₅H₄⁻ = 71.9 kcal/mol^{38,39} and the electron photodetachment (EPD) thresholds of c-C₅H₄⁻.³⁸ See text for further discussion.

comparison, available literature data are also shown in Table 4. It is seen that the computed $\Delta_f H^{\circ}_{298}$ of C₅H₆ (1) is 32.3

kcal/mol, which is in close agreement with that recommended by Pedley et al., 26 i.e., 32.1 \pm 0.4 kcal/mol. This is the only

reliable data available among the target species. A comparison between the results of ref 9 and the present study shows that the $\Delta_f H^{\circ}_{298}$ of ref 9 are consistently larger, with the largest and average differences equal to 5 and 2.5 kcal/mol, respectively.

The Cyclopentadienyl Radical. The cyclopentadienyl radical is a Jahn–Teller species. The ground-state C_5H_5 does not assume D_{5h} symmetry and resorts to $C_{2\nu}$ symmetry.^{40,41} Two initial guesses were generated for geometry optimization, including

The optimization results are seen to be inconsistent when different levels of theory were employed. Specifically, the UHF/ 6-31G(d) calculation yielded a local minimum corresponding to the ${}^{2}B_{1}$ wave function, but it considers the wave function ${}^{2}A_{2}$ to be unstable. Both UMP2(full)/6-31G(d) and CISD/6-31G(d) levels of theory yield a saddle point for the ${}^{2}B_{1}$ wave function (exactly one imaginary frequency) and again consider the ${}^{2}A_{2}$ wave function to be unstable. We note that the discrepancy between UMP2 and HF results for the ${}^{2}B_{1}$ wave function renders its G2(MP2,SVP) energy meaningless. As such, the result is omitted from Tables 3 and 4.

The density functional theory at the B3LYP level considers both wave functions to be stable. Such a result was found to be independent of the basis set employed, from the modest 6-31G(d) to the expansive 6-311++G(3df,2p). The optimized geometries are found to be the local minima of the potential energy surface (PES) of each wave function. The B3LYP energies of ${}^{2}B_{1}$ and ${}^{2}A_{2}$ are nearly equal. In addition, the G2-(B3LYP/MP2,SVP) energies are also nearly identical. Hence, despite the problems encountered in MP2 and CISD calculations, we used the G2(B3LYP/MP2,SVP) energies to compute the enthalpies of formation of C₅H₅. The resulting $\Delta_f H^{\circ}_{298}$ is 62.0 kcal/mol for the ${}^{2}B_{1}$ wave function and 62.6 kcal/mol for ${}^{2}A_{2}$. On the basis of these results, we recommend an enthalpy of formation of 62 kcal/mol for C5H5. This value is in close agreement with 63 \pm 2 kcal/mol reported by Defrees et al.³³ and 61 ± 2 kcal/mol from the measurements of cyclopentadiene acidity³⁴ and electron affinity.³⁵ However, the recommended value is larger than $\Delta_f H^{\circ}_{298} = 58 \pm 2$ kcal/mol, evaluated from the kinetics of cyclopentadiene iodination.³⁷

We note that the results presently obtained for C_5H_5 can do no more than confirm the earlier results of Borden and Davidson,⁴² who performed π -space CI calculation using a basis set of STO-3G orbitals. In that study, Borden and Davidson demonstrated that ²B₁ and ²A₂ wave functions have almost exactly the same energy at their respective minimum energy geometries. Moreover, they suggested that the ${}^{2}B_{1}$ and ${}^{2}A_{2}$ wave functions can nearly freely isomerize without an appreciable energy barrier. If so, we would expect the existence of a small vibrational frequency for both wave functions. This is indeed the case, as the B3LYP calculations yielded a vibrational frequency $(20-100 \text{ cm}^{-1})$ for both wave functions, irrespective of the basis function employed. Such a vibrational frequency was found to correspond to ring distortion. We note that the Hartree–Fock calculation for the ${}^{2}B_{1}$ wave function does not yield this small frequency.

In hope of obtaining the PES between the two wave functions, we performed extensive calculations using the internal reaction

Figure 2. Pseudorotation in the cyclopentadienyl radical.42

coordinate (IRC) method.⁴³ However, we were not able to obtain a complete PES, because the flatness of the potential energy surface prohibits gradient-based minimization techniques to reach a local minimum when the symmetry constraint was removed. Nonetheless, limited results obtained by us further suggest that the internal isomerization is extremely facile, in that a distortion from the C_{2v} symmetry does not lead to any appreciable rise in energy (<0.1 kcal/mol).

Rotational Constants and Vibrational Frequencies. Table 5 presents the rotational constants and the vibrational frequencies computed at the B3LYP/6-31G(d) level of theory. We found that the frequencies from B3LYP/6-31G(d) calculations are very close to the MP2(full)/6-31G(d) results, as shown in Table 5 for C_5H_4O and bicyclo- C_5H_4O . The differences in the evaluated specific heats and entropies are negligibly small between the MP2 and B3LYP frequencies.

The facile internal isomerization of the ${}^{2}B_{1}$ and ${}^{2}A_{2}$ wave functions requires the entropy of $C_{5}H_{5}$ to be evaluated with additional care. Figure 2 shows how this internal isomerization might take place. It is seen that the isomerization can yield a pseudorotation within the $C_{5}H_{5}$ structure, which would proceed without an appreciable hindrance as suggested by Borden and Davidson.⁴² Such a pseudorotation is supported by the experimental electron spin resonance (ESR) spectrum of the $C_{5}H_{5}$ radical down to 120 K,⁴⁴ which was found frozen out at 70 K on the ESR time scale. If one assumes that the latter temperature corresponds to the energy barrier of the internal pseudorotation, it would produce a negligible hindrance energy of 0.14 kcal/mol.

The previously discussed vibrational modes with ultralow wave numbers (at 26 and 57 cm⁻¹ for the respective wave functions ${}^{2}B_{1}$ and ${}^{2}A_{2}$; see Table 5) mirror the pseudorotation mode, which are expected to be highly anharmonic. It is better to approximate such an internal degree of freedom by an internal rotor. Its moment of inertia can be approximated by considering that the pseudorotation resembles the external rotor with the rotational axis perpendicular to the C₅H₅ ring. Such a treatment would cause the entropy of C₅H₅ to increase by as much as 6-7 cal mol⁻¹ s⁻¹ from that previously found. For example, S°_{298} determined with the pseudorotor treatment is 73.5 cal mol⁻¹ s⁻¹, compared to the compilation of Burcat et al.³² at 66.8 cal mol⁻¹ s⁻¹.

Potential Energy Surface of Cyclopentadienone Decomposition. It is fairly well agreed that one of the ring-breaking processes during benzene oxidation occurs with cyclopentadi-

TABLE 5: Molecular Properties Computed at the B3LYP/6-31G(d) Level of Theory

species	rotation	al constan	ts (cm ⁻¹)	vibrational frequencies ^{<i>a</i>} (cm ⁻¹)													
C ₅ H ₆	0.282	0.274	0.142	343	511 1258	675 1305	697 1391	797 1419	797 1544	912 1629	913 2965	931 2988	937 3144	959 3155	1002	1102	1111
$C_5H_5(^2B_1)$	0.309	0.283	0.148	26 1205	494	507 1381	675 1480	705	802 3158	827 3163	869 3174	877 3190	917 3197	936	1048	1065	1130
$C_5H_5(^2A_2)$	0.310	0.283	0.148	57 1203	483	518 1390	673 1441	705	803 3160	828 3161	861 3175	883 3190	909 3198	959	1026	1073	1130
2,5-C ₅ H ₅ OH	0.247	0.120	0.087	181 1066	271 1097	319 1141	544 1175	551 1275	680 1302	706 1369	779 1400	827 1568	874 1642	936 2864	941 3144	978 3157	1014 3170
1,3-C5H5OH	0.274	0.114	0.082	3188 225 1108 3186	3663 252 1123 3687	385 1171	409 1221	501 1282	618 1331	664 1393	793 1433	825 1579	883 1674	908 2962	938 2991	948 3148	1001 3181
1,2-C5H5OH	0.271	0.114	0.081	222 1091	265 1108	369 1168	393 1237	600 1272	623 1312	658 1411	752 1429	792 1572	902 1686	908 2959	912 2979	924 3131	987 3175
2-C ₅ H ₆ O	0.247	0.119	0.083	106 1146	290 1170	452 1220	534 1250	617 1314	745 1355	760 1452	811 1484	823 1632	907 1780	975 2982	993 3006	1017 3018	1098 3056
3-C ₅ H ₆ O	0.246	0.120	0.083	5158 93 1121 2126	3179 374 1121 2157	454 1175	457 1272	605 1283	669 1368	760 1443	760 1448	822 1661	952 1817	96 2975	966 2978	997 3001	1115 3002
2,4-C ₅ H ₄ OH	0.280	0.122	0.085	259 1079	3137 392 1109	439 1275	536 1306	625 1341	640 1422	659 1538	686 1547	712 3161	817 3172	859 3184	919 3203	1004	1030
2,4-C ₅ H ₅ O ^b	0.245	0.132	0.094	176 1090	397 1118	523 1276	626 1311	690 1363	766 1574	798 1603	804 1871	878 2843	947 3030	968 3038	968 3062	1055 3068	1066
1,3-C ₅ H ₅ O	0.267	0.123	0.085	178 1120	378 1163	447 1254	536 1299	628 1396	637 1430	764 1461	773 1698	815 2989	922 3019	94 3151	950 3172	1052 3188	1089
1,2-C ₅ H ₅ O	0.269	0.121	0.085	206 1118	335 1180	444 1278	536 1319	637 1348	655 1441	747 1612	753 1628	870 2951	918 2967	920 3152	962 3183	973 3185	1090
C ₅ H ₄ O	0.272	0.131	0.088	209 1123	448 1293	449 1342	640 1571	645 1643	714 1782	729 3161	830 3171	839 3204	943 3206	945	949	1084	1087
$C_5H_4O^b$	0.274	0.131	0.088	194 1147	418 1295	445 1342	620 1539	641 1605	697 1708	729 3151	787 3160	847 3191	864 3192	897	963	1084	1084
bicyclo-C ₅ H ₄ O	0.333	0.109	0.097	120 1129	388 1167	535 1202	547 1294	660 1585	762 1883	791 3129	839 3138	853 3144	882 3169	960	1001	1025	1034
bicyclo-C ₅ H ₄ O ^b	0.324	0.110	0.098	122 1127	383 1165	536 1201	551 1296	665 1529	767 1831	783 3129	838 3139	843 3139	884 3160	970	1007	1030	1039
$C_5H_4(^{3}B_1)$	0.352	0.278	0.155	495 1358	533 1439	587 1477	650 3153	704 3166	804 3207	847 3210	867	926	981	1043	1110	1122	1250
C_5H_4 (⁴ A ₂)	0.376	0.270	0.161	1342	513 1392	592 1496	599 3112	3154	3211	837 3221	879	953	1026	1078	1095	1214	1257

^{*a*} B3LYP/6-31G(d) frequencies multiplied by a scaling factor of 0.98.¹⁵ ^{*b*} MP2(full)/6-31G(d) rotational constants and vibrational frequencies. The MP2 frequencies are multiplied by a scaling factor of 0.9646.²⁴

enone (C₅H₄O, **12**) thermal decomposition, leading to smaller noncyclic fragments. Emdee et al.² proposed that the thermal decomposition of **12** leads to CO + 2C₂H₂ with the rate expression of k (s⁻¹) = 1 × 10¹⁵ exp[-78(kcal/mol)/*RT*]. In this section, we shall examine the kinetics of C₅H₄O decomposition in greater detail.

Recognizing the possibilities of multichannel dissociation of **12**, we considered several reaction paths. The first channel is characterized by several isomerization steps, which lead to cyclobutadiene (c-C₄H₄, **17**), as depicted below.

Cyclobutadiene, a molecule rectangular in shape and wellstudied for its antiaromaticity,^{45,46} is more favorable than the •HC=CH-CH=CH• biradical, because the $\Delta_f H^{\circ}_{298}$ of *c*-C₄H₄ (17) is 102 kcal/mol,⁴⁷ which is substantially lower than the $\Delta_f H^{\circ}_{298}$ of the biradical at 147 kcal/mol.⁴⁸ The reaction path depicted above involves the isomerization of 12 to the oxobicyclopentene (13), which then either directly dissociates to cyclobutadiene (17) + CO or isomerizes to the *c*-C₄H₄CO (16) biradical. The elimination of CO from **16** again leads to cyclobutadiene and CO. We note that the cyclobutadiene initially formed from the dissociation of **16** is in the triplet ${}^{3}B_{1}$ state, which lies only 6.9 kcal/mol above that of the ground-state *c*-C₄H₄ (**17**).^{46b}

The second channel breaks the C(1)-C(5) bond in **12**. This step produces the noncyclic **•**CHCHC**•**HCHCO biradical (**18**), as shown below. The biradical may then dissociate or isomerize to various products, which are to be discussed later.

The third channel involves the breaking of the C(3)–C(4) bond in **12**, leading to the **•**CHCHCOCHCH**•** biradical (**19**), which may readily dissociate to form $2C_2H_2 + CO$, i.e.,

TABLE 6: Total Energies (Hartrees) and Relative Energies (kcal/mol) Calculated with the G2(MP2,SVP) and G2(B3LYP/MP2,SVP) Method

		to	tal energy			
structure	point group	G2(MP2,SVP) ^a	G2(B3LYP/MP2,SVP)	relative energy ^{b}		
12	C_{2v}	-267.648 32	-267.648 55	0.0		
TS1	C_s	-267.54565		64.4		
13	C_s	-267.567 67	-267.56849	50.6 (50.2)		
TS2	C_1	-267.519 15		81.0		
TS4	C_s	-267.511 84		85.6		
16	C_1	-267.521 27	-267.523 56	79.7 (78.4)		
TS3	C_1	-267.50691	-267.50965	88.7 (87.1)		
17 (+ CO)		-267.55451	-267.554 39	58.8 (59.1)		
TS5	C_1	-267.51999		80.5		
18	Cs	-267.52485°		78.4		
•HC=CH-CH=CH• + CO		-267.478 30		106.6		
19	C_{2v}	-267.471 99		110.6		

^{*a*} Zero-point energies are obtained from the MP2(full)/6-31G(d) geometries with the vibrational frequencies scaled by 0.9646.²⁴ Hence, these G2(MP2,SVP) energies differ slightly from those listed in Table 3, which are based on the HF zero-point energies. ^{*b*} The values in the parentheses are calculated from G2(B3LYP/MP2,SVP) energies. ^{*c*} See ref 50.

Figure 3. Geometries of the relevant species and transition states of cyclopentadienone thermal decomposition, determined at the MP2(full)/6-31G(d) level of theory.

Table 6 summarizes the total G2(MP2,SVP) energies of the stationary structures and transition states. The energies relative to that of **12** are also presented in the same table. Figure 3 shows the geometries of the stationary points and selected transition states obtained with the MP2(full)/6-31G(d) method. The G2(B3LYP/MP2,SVP) method was also employed for selected species. The results are also shown in Table 6 for comparison. Again, the agreement between the G2(MP2,SVP) and G2(B3LYP/MP2,SVP) energies is very good for both stationary geometries and transition states.

The results in Table 6 show that channel 3 can be readily disregarded because of the high energy associated with the biradical **19**. The minimum energy path of channel 1 was found to be the direct elimination of CO from **13** (TS4). The energy of TS4 is 85.6 kcal/mol above that of **12**. The second biradical route, however, cannot be disregarded because the energy of TS3 is only 3.1 kcal/mol higher than that of TS4. In addition, TS3 represents a loose transition state. Its *A* factor must be larger than that through TS4.

The breaking of the C(1) and C(2) bond in C₅H₄O (**12**) to produce **18** (channel 2) has an energy barrier of 80.5 kcal/mol (TS5), which is comparable with that of channel 1. But the back reaction (**18** \rightarrow **12**) has such a small energy barrier (2.1 kcal/mol) that unless there is energetically favored exit channels for **18**, channel 2 would remain ineffective. This turns out to be highly likely. We had performed an exhaustive search on the potential energy surface to determine a suitable dissociative or isomerization path of **18**, but found none to be energetically viable. The considered products include C₂H₂ + HČ=CH– C=O or cyclopropenone, propargyl + ketyl, HČ–CH=CH– CH=C=O,⁵⁰ and ketylcyclopropene. Hence, channel 2 was also excluded from the RRKM calculations.

RRKM Rate Coefficients of Cyclopentadienone Decomposition. The pressure-dependent rate coefficients of cyclopentadienone decomposition following channel 1 were calculated with the RRKM theory.¹⁹ Details of the RRKM code can be found elsewhere.⁵¹ The energy barriers are presented in Figure 4, and the RRKM parameters, in Table 7.

 TABLE 7: RRKM Parameters of Cyclopentadienone Thermal Decomposition Following Channel 1, Calculated at the MP2(full)/6-31G(d) Level

12	ν , ^{<i>a</i>} cm ⁻¹	194	418	445	620	641	697	728	787	847	864	897
		963	1084	1085	1147	1295	1343	1539	1605	1709	3152	3161
		3191	3193									
	$B_{0},^{b} \text{ cm}^{-1}$	0.107 (1,2) externa	l inactive;	0.274 (2,1)	external ac	ctive					
	L-J params. ^c	$\sigma = 5.1$	Å; $\epsilon/k_{\rm B} = 4$	84 K								
13	ν , ^{<i>a</i>} cm ⁻¹	122	383	535	550	665	767	783	838	843	883	970
		1007	1030	1039	1127	1165	1200	1296	1529	1831	3129	3139
		3139	3160									
	$B_{0},^{b} \text{ cm}^{-1}$	0.104 (1	1,2) externa	l inactive;	0.324 (1,1)	external ac	ctive					
16 ^d	ν , a cm ⁻¹	49	174	418	421	477	574	598	889	906	913	955
		997	997	1152	1180	1202	1272	1299	1489	1864	3010	3162
		3194	3205									
	$B_{0},^{b} \text{ cm}^{-1}$	0.080 (1	1,2) externa	l inactive;	0.394 (1,1)	external ac	ctive					
TS1	ν , a cm ⁻¹	951i	239	430	467	595	682	757	767	819	944	964
		995	1033	1104	1119	1233	1272	1346	1530	1734	3145	3146
		3169	3190									
	$B_{0},^{b} { m cm}^{-1}$	0.100 (1,2) externa	l iinactive;	0.341 (1,1) external a	ctive					
$TS2^d$	ν , ^{<i>a</i>} cm ⁻¹	656i	106	337	444	508	605	764	828	869	923	962
		989	1011	1112	1153	1193	1205	1324	1525	1836	3053	3159
		3185	3203									
	$B_{0},^{b} { m cm}^{-1}$	0.090 (1,2) externa	l inactive;	0.363 (1,1)	external ac	ctive					
TS3	ν , ^{<i>a</i>} cm ⁻¹	630i	50^e	142	171	332	490	531	598	776	815	874
		912	924	991	1118	1198	1233	1313	1402	1892	3116	3171
		3199	3210									
	$B_{0},^{b} { m cm}^{-1}$	0.077 (2	1,2) externa	l inactive;	0.330 (1,1)	external ac	ctive					
		1.12 (1,	1) internal	active								
TS4	ν , ^{<i>a</i>} cm ⁻¹	683i	165	178	309	493	620	664	804	839	872	919
		949	1051	1062	1134	1189	1278	1374	1620	2015	3154	3170
		3213	3217									
	$B_{0},^{b} \text{ cm}^{-1}$	0.098 (1	1,2) externa	l inactive;	0.257 (1,1)	external ac	ctive					

^{*a*} Based on MP2(full)/6-31G(d) frequencies scaled by 0.9646.²⁴ ^{*b*} The numbers in parentheses are the symmetry number and the dimension of the rotor, in that order. ^{*c*} Reference 2. ^{*d*} Not used in the actual RRKM calculation (see text). ^{*e*} The vibrational motion is replaced by an internal free rotor, ^{19b} and the frequency is not used in the RRKM calculation.

Figure 4. Energy diagram of cyclopentadienone thermal decomposition.

To simplify the RRKM calculations, **16** was not considered as a stationary point, because it represents basically a shallow well on the potential energy surface. The collisional stabilization of **16** is expected to be inefficient. Hence, excluding it from the RRKM treatment has only negligible effects on the rate coefficient prediction.

The following reaction scheme was considered.

$$\begin{bmatrix} C_{5}H_{4}O \end{bmatrix}^{*} \xrightarrow[k_{a}(E)]{} \stackrel{k_{bi}(E)}{\underset{k_{-a}(E)}{\longleftrightarrow}} \begin{bmatrix} \text{bicyclo-}C_{5}H_{4}O \end{bmatrix}^{*} \xrightarrow{k_{bi}(E)} c \cdot C_{4}H_{4} (17) + CO$$

$$\uparrow \downarrow \beta_{a}\omega \qquad \uparrow \downarrow \beta_{b}\omega$$

$$C_{5}H_{4}O (12) \qquad \text{bicyclo-}C_{5}H_{4}O (13)$$

where k(E) are the microcanonical rate constant, and i = 1 and

2 denote the fluxes through the transition states TS3 and TS4, respectively. Assuming $[C_5H_4O]^*$ and $[bicyclo-C_5H_4O]^*$ are in the steady state, we obtain the thermal rate coefficients for

C₅H₄O (**12**)
$$\xrightarrow{k_1}$$
 bicyclo-C₅H₄O (**13**) (1)

$$C_5 H_4 O(12) \xrightarrow{k_{2i}} c - C_4 H_4(17) + CO$$
 (2)

bicyclo-C₅H₄O (**13**)
$$\xrightarrow{k_{3i}} c$$
-C₄H₄ (**17**) + CO (3)

as

$$k_1 = \int_0^{\infty} \frac{k_a(E) P_a(E)}{Z(E)} dE$$
(4)

$$k_{2,1} = \int_0^\infty \frac{k_a(E) k_{b1}(E) P_a(E)}{\beta_b \omega Z(E)} dE$$
 (5a)

$$k_{2,2} = \int_0^\infty \frac{k_{\rm a}(E) \, k_{\rm b2}(E) \, P_{\rm a}(E)}{\beta_{\rm b} \omega Z(E)} \, \mathrm{d}E \tag{5b}$$

$$k_{3,1} = \int_0^\infty \frac{[\beta_a \omega + k_a(E)]k_{b1}(E) P_b(E)}{\beta_a \omega Z(E)} dE$$
 (6a)

$$k_{3,2} = \int_0^\infty \frac{[\beta_a \omega + k_a(E)]k_{b2}(E) P_b(E)}{\beta_a \omega Z(E)} \, \mathrm{d}E \tag{6b}$$

where $P_{a}(E)$ and $P_{b}(E)$ are respectively the Boltzmann distribution functions of **12** and **13**, ω is the collision frequency, β is the collision efficiency factor calculated with eq 4.7 of ref 52,

Figure 5. Rate coefficients computed for cyclopentadienone thermal decomposition (a) at a pressure of 1 atm with N₂ as the third body $(\langle E_{down} \rangle = 260 \text{ cm}^{-1})$, and (b) comparison of the present high-pressure limit rate coefficient with the bicyclo-C₅H₄O in the steady state (eq 7) and the thermochemical estimate of Emdee et al.²

which considers a high-temperature nonequilibrium factor in the approximation of β , and

$$Z(E) = 1 + \frac{k_{a}(E)}{\beta_{a}\omega} + \frac{k_{-a}(E) + [k_{b1}(E) + k_{b2}(E)][1 + k_{a}(E)/\beta_{a}\omega]}{\beta_{b}\omega}$$

The total thermal rate coefficients of reactions 2 and 3 are equal to the sum of the fluxes through TS3 and TS4, respectively, and thus $k_{2(tot)} = k_{2,1} + k_{2,2}$, and $k_{3(tot)} = k_{3,1} + k_{3,2}$. The pressure falloff rate coefficients were computed with N₂ as the third body, and an average energy transfer per down collision $\langle E_{down} \rangle = 260 \text{ cm}^{-1}$. The high-pressure limit rate coefficients can be readily derived with eqs 4-6 modified in accordance with the conditions of $\omega \rightarrow \infty$. They are

$$k_1^{\infty} = \int_0^\infty k_a(E) P_a(E) dE$$
(7)

$$k_{2,i}^{\infty} = \int_0^\infty \frac{k_{\rm a}(E) k_{\rm bi}(E) P_{\rm a}(E)}{\beta_{\rm b} \omega}$$
(8)

$$k_{3,i}^{\infty} = \int_0^\infty k_{bi}(E) P_b(E) \,\mathrm{d}E$$
 (9)

Figure 5a presents the rate coefficients computed at a pressure of 1 atm. It is seen that reaction 17 dominates the overall thermal decomposition of C_5H_4O (12) for temperatures above 1250 K. However, the isomerization of 12 to 13 is seen to dominate below 1250 K.

We note that the asymptotic behavior of eq 5 at high pressures is that k_2 becomes inversely proportional to pressure and is equal to zero at the high-pressure limit. Hence, to compare the present results with the thermochemical estimate of Emdee et al.,² we used the high-pressure limit rate coefficients of reactions 1 and 3. It is assumed that the bicyclo- C_5H_4O (13) in the following reaction sequence,

$$C_5H_4O(12) \xrightarrow[k_1^{\infty}]{}_{k_{-1}^{\infty}} \text{bicyclo-} C_5H_4O(13) \xrightarrow{k_3^{\infty}} c-C_4H_4(17) + CO$$

can be treated by the steady-state assumption. It follows that the effective rate coefficient for the thermal decomposition of **12**,

 $C_{5}H_{4}O(12) \xrightarrow{k_{eff}^{\infty}} c - C_{4}H_{4}(17) + CO$

is

$$k_{\rm eff}^{\,\,\circ} = \frac{k_1 \, k_3}{k_{-1}^{\,\,\circ} + k_3^{\,\,\circ}} \tag{10}$$

Figure 5b presents the comparison between k_{eff}^{∞} and the rate coefficient estimate of Emdee et al.² It is seen that despite the large difference in the activation energy adopted by Emdee et al.² (78 kcal/mol) and the energy barrier determined in the present study (~90 kcal/mol), the agreement in the rate coefficients is surprisingly good. The reason is that in eq 7 $k_{-1}^{\infty} >> k_3^{\infty}$, and thus $k_{\text{eff}}^{\infty} \cong (k_1^{\infty}/k_{-1}^{\infty})k_3^{\infty}$. Because the A factor of $k_{3,1}^{\infty}$ is quite large ($A_{3,1}^{\infty} = 1.3 \times 10^{16} \text{ s}^{-1}$) because of a loose transition state (TS3), the A factor in k_{eff}^{∞} is larger than that estimated by Emdee et al.²

Despite the reasonably good agreement in the rate coefficients at the high-pressure limit, we recommend that the thermal decomposition kinetics of cyclopentadienone should be modeled by including reactions 1-3 and taking into consideration the appropriate pressure falloff effects. The Arrhenius rate parameters are fitted to the RRKM results and are tabulated in Table 8 at several representative pressures.⁵³

Thermal Decomposition of Cyclobutadiene. The noncyclic species are probably produced from the subsequent c-C₄H₄ dissociation. It was suggested⁵⁴ that the linearization of c-C₄H₄ to **'HC=CH–CH=CH'** has an energy barrier of 42 kcal/mol,^{46e} and the biradical decomposition to C₂H₂ + C₂H₂ has an energy barrier of 9 kcal/mol. Hence, the overall energy barrier of

$$c-C_4H_4 \rightarrow C_2H_2 + C_2H_2$$

can be estimated to be 51 kcal/mol. In addition, the thermally energized biradical may undergo $2,3-H_2$ elimination to form diacetylene and H_2 , or it may isomerize to vinylacetylene, i.e.,

$$c\text{-}C_{4}H_{4} \rightarrow C_{4}H_{2} + H_{2}$$
$$c\text{-}C_{4}H_{4} \rightarrow HC \equiv C - CH = CH_{2}$$

but both should have higher energy barriers, at 56 and 64 kcal/mol,^{46e} than decomposition to two C_2H_2 .

In addition to the reaction channels just discussed, we note that there exist numerous isomers that lie in the energy range 0-50 kcal/mol above the energy of cyclobutadiene. This offers possibilities of additional reaction channels that may lead to the thermal dissociation of cyclobutadiene. One such possible channel involves a 1,2-H shift in *c*-C₄H₄, followed by isomerization to methylenecyclopropene, which then dissociates to acetylene and vinylidene.

 TABLE 8: RRKM Rate Coefficient Parameters^a for the Cyclopentadienone Thermal Decomposition Reaction

		$k = AT^n$			
	P (atm)	A	п	Е	comments
k_1					
	0.1	7.0×10^{31}	-6.88	66.9	
	1	5.7×10^{32}	-6.76	68.5	
	10	4.4×10^{31}	-6.06	69.5	
	100	2.9×10^{27}	-4.50	69.1	
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$3.0 \times 10^{13}$		65.1	
$k_{2,1}$	0.1	$2.7 \times 10^{49}$	-10.31	101.2	
	1	$5.0 \times 10^{43}$	-8.41	100.1	
	10	$2.1 \times 10^{35}$	-5.81	97.3	
	100	$5.8 \times 10^{32}$	-4.92	97.7	
$k_{2,2}$	0.1	$2.7 \times 10^{44}$	-9.40	96.8	
	1	$1.3 \times 10^{39}$	-7.65	95.7	
	10	$1.0 \times 10^{32}$	-5.43	93.4	
	100	$1.1 \times 10^{30}$	-4.74	94.2	
$k_{2(tot)}$	0.1	$1.1 \times 10^{47}$	-9.63	99.5	
	1	$6.2 \times 10^{41}$	-7.87	98.7	
	10	$1.8 \times 10^{33}$	-5.22	95.8	
	100	$7.3 \times 10^{30}$	-4.39	96.3	
$k_{3,1}$	0	$7.9 \times 10^{44}$	-8.18	40.4	$k_{3,1}/[M]$
- /	0.1	$4.3 \times 10^{55}$	-12.55	65.3	b
	1	$6.9 \times 10^{43}$	-9.00	56.6	b
	10	$1.1 \times 10^{37}$	-6.89	50.5	b
	100	$3.1 \times 10^{37}$	-6.77	49.9	b
	~	$1.3 \times 10^{16}$		39.9	
$k_{3,2}$	0	$9.9 \times 10^{56}$	-12.14	40.5	$k_{3,2}/[M]$
- /	0.1	$1.5 \times 10^{53}$	-12.40	62.2	b
	1	$3.4 \times 10^{39}$	-8.37	51.6	b
	10	$6.5 \times 10^{33}$	-6.57	46.0	b
	100	$1.1 \times 10^{35}$	-6.67	46.0	b
	~	$8.1 \times 10^{13}$		36.3	
$k_{3(tot)}$	0	$8.4 \times 10^{43}$	-8.00	36.4	$k_{3(tot)}/[M]$
-()	0.1	$4.3 \times 10^{55}$	-12.55	65.3	b
	1	$6.9 \times 10^{43}$	-9.00	56.6	b
	10	$1.1 \times 10^{37}$	-6.89	50.5	b
	100	$3.1 \times 10^{37}$	-6.77	49.9	b
	~	$1.6 \times 10^{13}$	0.824	38.0	

^{*a*} Units in cm, s, mol, kcal, and K. Unless otherwise indicated, the rate parameters are fitted within the temperature range 300–2500 K. ^{*b*} Fitted for the temperature range 800–2500 K.

Singlet Cyclopentadienylidene as an Intermediate Species? For the two cyclopentadienylidene radicals (14, 15), we found that the enthalpy difference between the singlet  ${}^{1}A_{2}$  state and the ground triplet  ${}^{3}B_{1}$  state to be 6.4 kcal/mol, in close agreement with the earlier theoretical results of 7.3 kcal/mol⁵⁵ and 6.3 kcal/ mol,⁵⁶ and the experimental result of 5.8 kcal/mol, based on the measurements of electron photodetachment (EPD) thresholds of the c-C₅H₄⁻ anion radical.³⁸ On the absolute scale, however, the predicted  $\Delta_{\rm f} H^{\circ}_{298}$  (14) = 125.2 kcal/mol and  $\Delta_{\rm f} H^{\circ}_{298}$  (15) = 131.6.1 kcal/mol are significantly larger than the respective experimental data³⁸ at 112.3  $\pm$  4.7 and 118.1  $\pm$  4.7 kcal/mol. Because of the critical importance of the thermochemistry of the cyclopentadienylidene radicals in interpreting the oxidation mechanism of cyclopentadiene, as will be discussed later, the discrepancies between the experimental and theoretical  $\Delta_{\rm f} H^{\circ}_{298}$ values warrant further discussion.

We first consider the accuracy of the theoretical methods employed for energy prediction for strained singlet radial species, such as the cyclopropenylidene, c-C₃H₂ (¹A₁). At the G2(B3LYP/MP2,SVP) level, we computed the total energy of c-C₃H₂ to be -115.137 60 hartrees. The  $\Delta_{\rm f}H^{\circ}_{298}$  value of c-C₃H₂ can be estimated from its atomization energy with the total energies of C and H taken from Table 1. Using the respective  $\Delta_{\rm f}H^{\circ}_{298}$  values of 52.1 and 142.2 kcal/mol for H and C,²⁵ we obtained  $\Delta_{\rm f}H^{\circ}_{298} = 118$  kcal/mol for c-C₃H₂ (¹A₁), in excellent agreement with the recent experimental data of 119.5  $\pm$  2.2 kcal/mol.⁵⁷

The experimental results of **14** and **15** were obtained as the sum of the electron affinities (EA), determined by the thresholds of EPD from the c-C₅H₄⁻ anion radical,³⁸ and the  $\Delta_{\rm f}H^{\circ}_{298}$  of c-C₅H₄⁻, determined with the ion/molecule reaction bracketing (IMRB) technique.^{38,39} The experimental EA values are 40.4  $\pm$  1.1 kcal/mol for **14** and 46.2  $\pm$  0.2 kcal/mol for **15**. The experimental  $\Delta_{\rm f}H^{\circ}_{298}(c$ -C₅H₄⁻) is 71.9  $\pm$  3.6 kcal/mol.

We next examine the computed EA values. Calculations at the G2(B3LYP/MP2,SVP) level yielded the total energy of  $c-C_5H_4^-$  equal to -192.460 57 hartrees. Then, the computed electron affinity of 14 is  $E(14) - E(c-C_5H_4^-) = 42.7$  kcal/mol, and of 15,  $E(15) - E(c-C_5H_4^-) = 46.0$  kcal/mol. These values are in close agreement with the experimental results of ref 38. Hence, the disagreement between the theoretical and experimental  $\Delta_f H^{o}_{298}$  values of 14 and 15 must come from the discrepancy in the  $c-C_5H_4^-$  anion.

Indeed, the  $\Delta_{\rm f} H^{\circ}{}_{298}$  of  $c\text{-}{\rm C}_{5}{\rm H}_{4}^{-}$  determined from the G2-(B3LYP/MP2,SVP) atomization energy yielded  $\Delta_{\rm f} H^{\circ}{}_{298}$  ( $c\text{-}{\rm C}_{5}{\rm H}_{4}^{-}$ ) = 83 kcal/mol, which is larger than the experimental counterpart by about 11 kcal/mol. Hence, either the experimental  $\Delta_{\rm f} H^{\circ}{}_{298}$  value of the  $c\text{-}{\rm C}_{5}{\rm H}_{4}^{-}$  anion is in error, or the present theoretical values for the anion radical and the triplet and singlet  $c\text{-}{\rm C}_{5}{\rm H}_{4}$  radicals are all too high by 11–13 kcal/mol. The latter is highly unlikely considering the error limits of the theoretical methods and the close prediction for the cyclopropenylidene radical discussed previously.

To further substantiate the above discussion, we computed the G2(B3LYP/MP2,SVP) energy for the cyclopentadienyl anion  $(c-C_5H_5^-)$  and obtained  $E_0 = -193.142$  35 hartrees, which can be used to compute the ionization energy of  $C_5H_5^-$  ( $c-C_5H_5^ \rightarrow C_5H_5(2) + e$ ). Using  $\Delta_f H^{\circ}_{298} = 62$  kcal/mol for  $C_5H_5$ , we obtained  $\Delta_f H^{\circ}_{298} = 17.8$  kcal/mol, which is in excellent agreement with the experimental data of 19.6  $\pm$  3.8 kcal/mol of ref 58 and 18.9  $\pm$  1.9 kcal/mol of ref 59. On the basis of the above discussion, we found that there is no reason to think that our  $\Delta_f H^{\circ}_{298}$  values for the cyclopentadienylidene are inaccurate. Furthermore, we note that the problems associated with IMRB have been well-documented when the technique is used for the determination of thermochemistry.⁶⁰

We next examine the possibility of the singlet cyclopentadienylidene as an intermediate species during the oxidation of cyclopentadiene. The importance of c-C₅H₄ (¹A₂) can be appreciated by the fact that it may be able to react with molecular oxygen without an appreciable energy barrier. Such a reaction would provide secondary chain branching and presumably leads to ring breakdown. Hence, if the production of c-C₅H₄ is substantial, it is necessary to consider the relevant reaction channels leading to its formation and destruction.

The singlet cyclopentadienylidene may be produced from the chemically activated reactions of  $C_5H_5$  (2) with H, O, OH, HO₂, and O₂, as shown in Figure 6. These are chemically activated radical-radical combinations, followed by dissociation of the hot adducts to  $C_5H_4$  ( 1A_2 ). For comparison, the reaction channels leading to products other than  $C_5H_4$  ( 1A_2 ) are included in the same figure. Because the radical-radical combination reactions and the insertion of the singlet *c*- $C_5H_4$  into H₂, OH, H₂O, H₂O₂, and HO₂ are expected to proceed without an appreciable energy barrier, an examination of the reaction enthalpy is sufficient to determine the relative importance of certain reaction channels. For a preliminary screening, the energy barriers of several isomerization steps have been



devised in the present study and was shown to provide atomization energies with accuracy comparable with G2(MP2) and G2(B3LYP/MP2). The thermal decomposition kinetics of cyclopentadienone was examined. It is concluded that the decomposition of cyclopentadienone leads primarily to cyclobutadiene. The pressure-dependent rate coefficients were computed with the RRKM theory and reported for future kinetic modeling studies. On the basis of the presently determined enthalpies of formation, the production of the singlet cyclopentadienylidene is seen to be feasible at high temperatures through the reaction between the cyclopentadienyl and OH radicals, which may need to be taken into consideration in the kinetic model of aromatics combustion.

Acknowledgment. The work utilized the computer system Power Challenge Array at the National Center for Supercomputing Applications, University of Illinois at Urbana—Champaign. We thank Prof. Alexander Burcat, Dr. Kerwin D. Dobbs, and Prof. Douglas J. Doren for helpful discussions.

#### **References and Notes**

(1) Brezinsky, K. Prog. Energy Combust. Sci. 1986, 3, 1.

(2) Emdee, J. L.; Brezinsky, K.; Glassman, I. J. Phys. Chem. 1992, 96, 2151.

(3) Lindstedt, R. P.; Skevis, G., Combust. Flame 1994, 99, 551.

(4) Zhang, H.-Y.; McKinnon, J. T. Combust. Sci. Technol. 1995, 107, 261.

(5) Tan, Y. W.; Frank, P. Twenty-Sixth Symposium (International) on Combustion; The Combustion Institute: Pittsburgh, in press.

(6) Bittner, J. D.; Howard, J. B. *Eighteenth Symposium (International) on Combustion*; The Combustion Institute: Pittsburgh, 1980; p 1105.

(7) Davis, S. G.; Wang, H.; Brezinsky, I.; Law, C. K. *Twenty-Sixth Symposium (International) on Combustion*; The Combustion Institute: Pittsburgh, in press.

(8) Lindstedt, R. P.; Maurice, L. Q. Combust. Sci. Technol. 1996, 120, 119.

(9) Karni, M.; Oref, I.; Burcat, A. J. Phys. Chem. Ref. Data 1991, 20, 665.

estimated with the semiempirical PM3 method.⁶¹ These energies are marked by the asterisks in Figure 6.

It is seen that only the reaction

$$C_5H_5 + OH \rightarrow C_5H_4$$
 (¹A₂) + H₂O

radical with H, O, OH, HO₂, and O₂. The asterisks indicate that the

energy levels were computed with the semiempirical PM3 method.⁶¹

is feasible for appreciable  $C_5H_4$  (¹A₂) production, but even this reaction is only thermally neutral and suffers competition from

$$C_5H_5 + OH \rightarrow 2, 4-C_5H_4OH + H$$

All other reactions producing  $C_5H_4$  ( 1A_2 ) are significantly endothermic. With the presence of energetically favored channels leading to the dissociation of the respective hot adducts, we expect limited  $C_5H_4$  ( 1A_2 ) production from the reactions of  $C_5H_5$  with O, HO₂, and O₂. On the basis of the above discussion, the  $C_5H_4$  ( 1A_2 ) chemistry is not expected to be significant during cyclopentadiene oxidation at low to intermediate temperatures, but it may well contribute to the overall oxidation at high temperatures. We note that if we adopt the lower  $\Delta_f H^o_{298}$  value of ref 38 for  $C_5H_4$  ( 1A_2 ), its production would be competitive over a wide range of temperatures. But this is unlikely for reasons already discussed.

### **IV. Summary**

The enthalpies of formation of 15 intermediate species of cyclopentadiene oxidation were determined by molecular orbital calculations at the G2(MP2,SVP) and G2(B3LYP/MP2,SVP) levels of theory. The G2(B3LYP/MP2,SVP) method was

(10) Disch, R. L.; Schulman, J. M.; Sabio, M. L. J. Am. Chem. Soc.
1985, 107, 1904.
(11) Curtics L. A.; Pachauscheri, K.; Trucke, G. W.; Popla, L. A. J.

(11) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem Phys. **1991**, *94*, 7221.

(12) Curtiss, L. A.; Raghavachari, K.; Pople, J. A. J. Chem Phys. 1993, 98, 1293.

(13) Smith, B. J.; Radom, L. J. Phys. Chem. 1995, 99, 6468. Curtiss, L.

A.; Redfern, P. C.; Smith, B. J.; Radom, L. J. Chem Phys. 1996, 104, 5148.
(14) Mebel, A. M.; Morokuma; Lin, M. C. J. Chem. Phys. 1995, 103, 7414.

(15) Bauschlicher, C. W., Jr.; Partridge, H. J. Chem. Phys. 1995, 103, 1788.

(16) Glukhovtsev, M. N.; Laiter, S.; Pross, A. J. Phys. Chem. 1995, 99, 6828.

(17) Glukhovtsev, M. N.; Bach, R. D.; Laiter, S. J. Phys. Chem. 1996, 100, 10952.

(18) Wang, H.; Law, C. K. J. Phys. Chem. 1997, 101, 3400.

(19) See, for example: (a) Robinson, P. J.; Holbrook, K. A. Unimolecular Reactions; Wiley: New York, 1972. (b) Gilbert, R. G.; Smith, S. C. Theory of Unimolecular and Recombination Reactions; Blackwell Scientific: Oxford, 1990.

(20) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head Gordon, M.; Gonzalez, C.; Pople, J. A. *Gaussian 94*, Revision D.4; Gaussian, Inc.: Pittsburgh, PA, 1995.

(21) Stevens, P. J.; Devlin, F. J.; Chablowski, C. F.; Frisch, M. J. J. Phys. Chem. 1994, 98, 11623.

(22) Hehre, W. J.; Ditchfield, R.; Radom, L.; Pople, J. A. J. Am. Chem. Soc. 1970, 92, 4796.

(23) Peng, C.; Schlegal, H. B. Isr. J. Chem. 1993, 33, 449.

(24) Pople, J. A.; Scott, A. P.; Wong, M. W.; Radom, L. Isr. J. Chem. 1993, 33, 345. (25) JANAF Thermochemical Tables; Natl. Stand. Ref. Data Ser.; U.S. Natl. Bur. Stand., 1985; Vol 37.

(26) Pedley, J. B.; Naylor, R. D.; Kirby, S. P. *Thermochemical Data of Organic Compounds*; Chapman and Hall: London, 1986.

(27) Tsang, W. In *Energetics of Organic Free Radicals*; Martinho Simoes, J.A., Greenberg, A., Liebman, J. F., Eds.; Blackie Academic and Professional: London, 1996; pp 22–58.

(28) Ruscic, B.; Berkowitz, J. J. Chem. Phys. 1994, 101, 10936.

(29) Holmes, J. L.; Lossing, F. P.; Meyer, P. M. J. Am. Chem. Soc. 1991, 113, 9723.

(30) Curtiss, L. A.; Lucas, D. J.; Pople, J. A. J. Chem. Phys. 1985, 102, 3292, and references therein.

(31) Holmes, J. L.; Lossing, F. P. J. Am. Chem. Soc. 1982, 104, 2648.

(32) Burcat, A.; McBride, B.; Rabinowitz, M. 1990 Ideal Gas Thermodynamic Data for Compounds Used in Combustion; Technion Report No. T.A.E. 657; Israel, 1990.

(33) Defrees, D. J.; McIver, R. T., Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 3334.

(34) Bartmess, J. E.; Scott, J. A.; McIver, R. T. J. Am. Chem. Soc. 1979, 101, 6046. Cumming, J. B.; Kebarle, P. Can. J. Chem. Phys. 1978, 56, 1.

(35) Engelking, P. C.; Lineberger, W. C. J. Chem. Phys. 1977, 67, 1412.
 (36) Telnoi, V. I.; Rabinovitch, I. B. Russ. Chem. Rev. 1977, 46, 689.

(37) McMillen, D. F.; Golden, D. M. Annu. Rev. Phys. Chem. 1982, 33, 493. Puttemans, J. P.; Smith, G. P.; Golden, D. M. J. Phys. Chem.

**1990**, *94*, 3227. (38) McDonald, R. N.; Bianchina, E. J., Jr.; Tung, C. C. J. Am. Chem.

Soc. **1991**, *113*, 7115.

(39) McDonald, R. N.; Chowdhury, A. K.; Setser, D. W. J. Am. Chem. Soc. 1980, 102, 6491.

(40) Jahn, J. A.; Teller, E. Proc. R. Soc. 1937, 161, 220.

(41) Clark, T.; Chandrasekhar, J.; Schleyer, P. V. R.; Saunders, M. J. Chem. Soc. Chem. Commun. 1980, 265.

(42) Borden, W. T.; Davidson, E. R. J. Am. Chem. Soc. 1979, 101, 3771.
(43) Gonzalez, C.; Schlegel, H. B. J. Chem. Phys. 1989, 90, 2154.
Gonzalez, C.; Schlegel, H. B. J. Phys. Chem. 1990, 94, 5523.

(44) Liebling, G. R.; McConnell, H. M. J. Chem. Phys. 1965, 42, 3931.
 Hedaya, E. Acc. Chem. Res. 1969, 2, 367.

(45) For example: Lewis, D.; Peters, D. Facts and Theories of Aromaticity; Macmillan: London, 1975. Bally, T.; Masamune, S. Tetrahedron 1980, 36, 343. Maier, G. Angew. Chem. Int. Ed. Engl. 1988, 27, 309. Arnold, B. R.; Michi, J. In Kinetics and Spectroscopy of Carbenes and Biradicals; Platz, M. S., Ed.; Plenum: New York, 1990; p 1. Cram, D. J.; Tanner, M. E.; Thomas, R. Angew Chem., Int. Ed. Engl. 1991, 30, 1024. Minkin, V. I.; Glukhovtsev, M. N.; Simkin, B. Ya. Aromaticity and Antiaromaticity. Electronic and Structural Aspects; Wiley: New York, 1994.

(46) Theoretical studies, see ref 16 and others including: (a) Kollmar,
H. J. Am. Chem. Soc. 1980, 102, 2617. (b) Hess, B. A.; Schaad, L. J. J.
Am. Chem. Soc. 1985, 107, 865. (c) Disch, R. L.; Schulman, J. M.; Sabio,

M. L. J. Am. Chem. Soc. 1985, 107, 1904. (d) Staley, W. W.; Norden, T. D. J. Am. Chem. Soc. 1989, 111, 445. (e) Zhang, M.-Y.; Wesdemiotis, C.; Marchetti, M.; Danis, P. O.; Ray, J. C.; Carpenter, B. K.; McLafferty, F. W. J. Am. Chem. Soc. 1989, 111, 8341. (f) Balková, A.; Bartlett, R. J. J. Chem. Phys. 1994, 101, 8972. (g) Mo, Y.; Wu, W.; Zhang, Q. J. Phys. Chem. 1994, 94, 10048. (h) Torii, H.; Tasumi, M. J. Mol. Struct. 1996, 376, 317.

(47)  $\Delta_t H^{\circ}_{298} = 102 \pm 1$  kcal/mol for *c*-C₄H₄ based on calculations using the G2 method.¹⁶ Our own calculation at the G2(MP2,SVP) level of theory and with the use of the isodesmic reaction *c*-C₄H₄ + 4CH₄ = 2C₂H₆ + 2C₂H₄ yielded  $\Delta_t H^{\circ}_{298}(c-C_4H_4) = 102$  kcal/mol, in perfect agreement with the G2 result.

(48) Based on the G2(MP2,SVP) energy of -154.30259 hartrees for the biradical and the enthalpy of isodesmic reaction **•**HC=CH-CH=CH• + 2CH₄ = 2C₂H₃ + C₂H₆. Note that the group additivity method with  $\Delta_{\rm f} H^{\circ}_{298} = 26$  kcal/mol for 1,3-butadiene and the vinylic C–H bond dissociation energy of 111 kcal/mol⁴⁹ yields a lower  $\Delta_{\rm f} H^{\circ}_{298}$  for the biradical at 144 kcal/mol.

(49) Ervin, K. M.; Gronert, S.; Barlow, S. E.; Gilles, M. K.; Harrison, A. G.; Bierbaum, V. M.; DePuy, C. H.; Lineberger, W. C.; Ellison, G. B. *J. Am. Chem. Soc.* **1990**, *112*, 5750.

(50) The total G2(MP2,SVP) energy of the singlet  $\ddot{H}$ -CH=CH-CH=C=O biradical was found to be about equal to that of the triplet HC=CH-CH=CH-C=O radical.

(51) Wang, H.; Frenklach, M. J. Phys. Chem. 1994, 98, 11465.

(52) Gilbert, R. G.; Luther, K.; Troe, J. Ber. Bunsen-Ges. Phys. Chem. 1983, 87, 169.

(53) The thermochemical data of the bicyclo-C₅H₄O (**13**), along with all other species shown in Figure 1, can be obtained at the World Wide Web address http://www.me.udel.edu/~hwang/C₅H₆.thermo.

(54) Kollmar, H.; Carrion, F.; Dewar, M. J. S.; Bingham, R. C. J. Am. Chem. Soc. **1981**, 103, 5292.

(55) Bofill, J. M.; Bru, N.; Farroàs, J.; Olivella, S.; Solé, A.; Vilarrasa, J. J. Am. Chem. Soc. 1988, 110, 3740.

(56) Collins, C. L.; Davy, R. D.; Schaefer, H. F., III. Chem. Phys. Lett. **1990**, 171, 259.

(57) Chyall, L. J.; Squires, R. R. Int. J. Mass Spectrom. Ion Processes 1995, 149/150, 257.

(58) Bartmess, J. E.; Scott, J. A.; McIver, R. T., Jr. J. Am. Chem. Soc. 1979, 101, 6047.

(59) DiDomenico, A.; Harland, P. W.; Franklin, J. L. J. Chem. Phys. 1972, 56, 5299.

(60) Lias, S. G.; Bartmess, J. E.; Liebman, J. F.; Holmes, J. L.; Levin, R. D.; Mallard, W. G. *Gas-Phase Ion and Neutral Thermochemistry*; American Institute of Physics: New York, 1988; *J. Phys. Chem. Ref. Data* **1988**, *17*, Suppl. 1.

(61) Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209.